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ABSTRACT

We consider wave equations with damping in the boundary conditions.

Techniques to ascertain the uniform preservation under approximation of ex-

ponential stability are presented. Several schemes for which preservation can

be guaranteed are analyzed. Numerical results that demonstrate the lack of

stability under approximation for several popular schemes (including standard

finite difference and finite element schemes) are given.
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1 Introduction

In this paper, we consider approximation methods for the boundary damped nor-

malized (i.e., wave speed c = 1) wave equation system

(1.1) a, u(t,x) = Au(t,X), t > 0, x e fl C R",
(1.2) u (t, X) =0, t > 0, X E FOC cafl,

(1.3) atu(t,z) + a9,u(t,X) = 0, t > 0, X r, FC a9f,

where the domain Q is an open bounded subset of R', f0 is a relatively closed subset

of the boundary cil of the domain fl, and F is the complementary subset of ro in

the boundary f. The symbol a,, represents the directional derivative operator in

the outward normal direction of the boundary. Since the boundary condition (1.2)

is often referred to as a reflecting boundary condition, 10 is called the reflecting

boundary. Similarly, F1 is called a partially absorbing boundary.

The system (1.1)-(1.3) arises in many important models for distributed pa-

rameter control problems. In particular, in the model of a vibrating flexible mem-

brane, the solution u(t, x) represents the transverse displacement of the membrane,

and in models for acoustic pressure fields, the solution u(t, x) represents the fluid

pressure (see, [BKS], [BKSW], [BPS], [Li], for more detailed examples). It can

be shown that for a given initial state u(O,x) = uo(x) and ut(o,x) = vo(X), the

solution of (1.1)-(1.3) decays exponentially in time and the decay rate is uniform

for all initial states (uo, vo) in a certain function space (see [C], [LI). The stability

of the solutions of (1.1)-(1.3) plays an essential role in several control theoretical

issues ([BKI,[BW]). In this paper, we are interested in approximation methods that

uniformly preserve the exponential stability of the solutions of (1.1)-(1.3) for the

approximate solutions.

The equations (1.1)-(1.3) can be written abstractly as a differential equation

d w(t) = A w(t), t >O0, w(t) E M,
dt

in an infinite dimensional function space Y. In this context, we consider a linear

control system givcn by

(1.4) -w(t) = Aw(t) + Bh(t), h(t) E R

where h is a control input and B is a linear operator from R' into )1. The most

common approach for the approximation of a control problem involving (1.4) is to
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formulate a sequence of finite dimensional control systems of the form

(1.5) tbN (t) = ANWN(t) + BNh(t), t > 0, wN (t) E yN,

where the dimension of the space M'g increases toward infinity as N tends to in-

finity. In general, equation (1.5) is derived from (1.4) using space discretization
techniques such as finite difference, finite elements or spectral methods developed
for the approximation of the solutions of (1.1)-(1.3). A control strategy is then
designed for the finite dimensional control problem involving (1.5). This control
is used as an approximation to th2 desired control function for the control prob-
lem involving (1.4) (for example, see [G], [BKj, [BWl). One of the most practical
conditions to assure the well-posedness of the finite dimensional control problems,
as well as the convergence of the approximate controls to the desired control for
the infinite-dimensional system is that the solutions of (1.5) for h -= 0 preserve the
exponential decay of the solutions of (1.1)-(1.3).

From a stability analysis of the solutions of (1.1)-(1.3), it is easy to see that
the energy dissipation in (1.1)--(1.3) comes exclusively from the boundary condition
(1.3). Since no medium damping exists in (1.1), we refer to (1.1)-(1.3) as a weakly
damped wave equation. Although many approximation techniques can provide con-
vergent approximations for the solutions of (1.1)-(1.3) by the solutions of (1.5) with
h = 0, the nature of the dissipation in (1.1)-(1.3) makes it very difficult to preserve
the uniform exponential decay of the solutions of (1.1)-(1.3). Numerical results
from our investigations reveal that most of the popular discretization techniques
can not maintain a uniform decay rate in the solutions of (1.5) with h = 0 as the
dimension of the approximate system (1.5) increases.

Although the preservation of the stability or the stabilizability of hyperbolic
type control systems is well-known to be a delicate approximation problem, there
exist, to our knowledge, only a few analytical results and these are for the approx-
imation of "hyperbolic" delay equations (see [IK]). In this paper, we present a
general approach for the analysis of uniform preservation of exponential stability of
approximation systems for weakly damped wave equations. This approach is later
used to show that a particular mixed finite element method and ; :iynomial based
Galerkin methods preserve a uniform exponential decay rate in the approximate
solutions as the dimension of the approximate system increases to infinity.

An outline of the paper is as follows. In Section 2, we specify the class of
approximation methods for the weakly damped wave equation considered in this
paper. Then wc present a general approach for the analysis of decay rate in the
solutions of these approximate wave equations. In Section 3, the approach developed
in the proceeding section is used to prove that a mixed finite element method for
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the 1-dimensional problem preserves uniformly an exponential decay rate in the
approximate solutions. In Section 4, polynomial based Galerkin approximations of
weakly damped wave equations in hypercubical domains are analyzed. These are
also shown to preserve uniformly an exponential decay rate. In Section 5, several
popular discretization methods are investigated numerically; a sharp distinction
between the methods analyzed in the earlier sections and the other popular methods
emerges from our numerical findings. In Section 6, our concluding remarks offer a
perspective of the results presented here.

We finish this introduction by observing that interest in the weakly damped
wave equation is also strongly motivated by the question of exact controllability of
the wave equation via partial boundary control. As it was pointed out by Datko (see
D ), exact controllability or stabilizability via boundary control may be extremely

sensitive to perturbations. However, we view equations (1.1)--(1.3) as the model
of a physical system, where the control input is a nonhomogeneous term in (1.1)
as it is formulated in ([BFSJ, [BKSW], [BKS], etc.). Thus, our control input does
not introduce changes in the boundary condition (1.3). More discussion on the
significance of our results for the preservation of boundary stabilizability of the
wave equation is given in Section 6.
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2 Estimation of decay rate for approximate solutions of the
wave equation: A general approach

In many analytical studies of control problems, the system (1.1)-(1.3) is taken in
the sense of distributions and one seeks mild or weak solutions. As a second order
equation, the state space for the mild solution (u(t),ut(t)) of (1.1)-(1.3) is taken to
be )t = Hro(0) x L2(Sl), where the Hilbert space Hr0 (12) is defined by

H~ro(n) = {u(.) E H1(fn)ju(x) - O,x E ro}.

For simplicity of analysis, we assume that F0 has a non empty relative interior; thus
an inner product in Hr.o(fl) that is equivalent to the usual H 1 (fl) inner product can
be defined by

<u,v >,= f Vu(x) .Vv(x)dx, u,v E H'-(fl).

The infinitesimal generator for the mild solution semigroup of (1.1)-(1.3) is defined
by

D {A (u, v) E M Iv EHr. (n),L u EL 2(nl),

aAu(x) + av(x) = O,x E f1

A : D9(A) C M( '- W, A (u, v) = (v,A4 ,,u).

It is easy to verify that A generates a CO-contraction semigroup S(t) in i. It is
shown in [C] and [L that there exist constants M > 1,w > 0 such that

HlS(t)IL(V) < Me_", for t > 0.

Alternatively and equivalently, for the initial state (uOvo) E D(A), the solution
(u(t),v(t)) = S(t)(uo,vo) satisfies the following variational equality,

(2.1)dd- < u(t),f >1 = < V(t),f >1
(2.1) d ta 

tx g x d

d <v(t),g >L2 () = - < U(t),g > -f v(t,z)gCx)dx

for all (f,g) G H'r(11) x Hr0 (fl). Equation (2.1) is often referred to as a weak
formulation of (1.1)-(1.3) and it is a natural formulation in which to consider ap-
proximation methods.

Consider two finite dimensional spaces H' and H' of functions defined on
fl given by

H = span{¢o}N 1 , H' =span{t'}g 1 .
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We consider approximations to the solutions of (1.1)-(1.3) in the form

N N

k=1 k=1

In most cases, H2 and Hj are chosen to be subspaces of H'0 (1) and L2 (FZ),
respectively. However, this condition is not essential in the analysis presented below.
Let us denote the column vectors of the coefficients uN(t),vN(t) by

N (t))
uN(t) V (t)

Then system (1.1)-(1.3) is approximated by an ordinary differential equation of the
form

(2.2) [KN M NWN 0) KN B ]V (t))
I M N  (VN(t) = -K N  -B N  vN(t) )"

The matices KN and MN are symmetric and positive definite by construction.
The matrix BN is symmetric nonnegative definite. It arises from the boundary
integral term in (2.1). In general, mappings qN: H2  H g are chosen (IKI. The
approximate solution (uN(t),vN(t)) is required to satisfy the following variational
system which is analoguous to (2.1):

dd < UN (t)' ON > I N < V qYv(t))'¢ON > I
dtk<qk

d-- < vN(t), >L2() = - <uN(t),qN(i) > - aqN(vY(t))qN( N)dr.

In particular, if the mappings qN are defined as qN(ON) =ON,j 1,... ,N, then,
the matrices KN , MN and BN are defined by

N fVON$(--) -V0(x)dx,
MN= f = N(()ON

=j j b (x) xdx.

In the case of Galerkin type of methods, i.e., finite elements, spline based Galerkin
methods, polynomial based Galerkin methods, HN = H, and therefore, qv = I
the identity operator.
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We are interested in the exponential decay rate of the approximate solutions
(uN,vN). First, we need to assume that the appropriate norm for the approxi-
mate solutions is used. In general, the convergence properties of the approximation
schemes can be stated as follows: Let 1N be a mapping from YN H g x H N into
Y. Then (uN, VN ) is said to converge to (u, v), if

f1iN (uN, vN) - (u, v)ll 0,

as N tends to infinity.

Definition 2.1 (Uniform exponentially stable approximation) A given approxima-
tion method is said to preserve uniformly the exponential stability of the solutions
of (1.1)-(1.3), if there exist constants M and a > 0 independent of N such that for
any initial state (uo,vo) the corresponding aproximate solutions satisfy

IN (UN (t), vN(t))Il Me-" !(uo, vo)lv, N = 1,2,.

It follows from the positivity of the matrices KN and ,/N that a norm is
defined on H' ×x by

(U N , vN)jH, ×H' --- < KN11N, U
N 

>RN + < MN IN. V
'
S >RN,

where fLN and j)N are vector representations of UN and vN with respect to the bases
of Hiv and H N , respectively. We require the following condition to hold.

Condition 2.1 (Norm compatibility) There ezist constants c1 , c2 independent of N
such that for all (uN , vN) E Hi x H.

cliju~,v)INH V V~'~ vN) C2 1 c(UN, VN)VHvxHN.

We note that in the case of Galerkin type of methods mentioned previously,
the above condition holds with cl = C2  1. Under the above condition, in order
to establish preservation of exponential stability, it is sufficient to show that the
approximate solutions (uN(t), vN(t)) have a uniform exponential decay rate under
the norm ,! " H H'.

In the analysis of the stability of solutions of (1.1)-(1.3), a generalized Lyaponov
function Q(t) is used in ([Cl, L]). It is defined by

Q N = Jt (U (t). v(t)) + 2v(t)( . Vu(t)) - ti - 1 u(t)v(t)Jdx
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where t is a vector field defined on fl that represents certain characteristics of the
domain f0 and its boundary, t.,(x) = 9.,.(x), and the term E(t) I- (u(t),v(t)jlN
represents the energy associated with a solution (u(t),v(t)) at time t. The main
steps of the analysis consist in establishing the following results:

(LI) There exists a constant T, > 0 such that for all t > 'I,

Q (t) E r(t).

-4

(L2) There exists a constant T2 , such that for all t > T2, Q(t) < 0.
(L3) For any given T > 0, there exists a constant M such that for all t < T,

jQ(t)j < ME(t).

From (L1)-(L3), we can find a constant C such that for all initial conditions and
for all t > T = max{T1 , T2} we have

E(t) < 4ME(T) < cE(O).
t t

Using the semigroup property of S(t), e.g., see [P, p.116], we conclude that S(t) is
exponentially stable as t tends to infinity.

Since (2.2) is an approximation of (1.1)-(1.3), it is natural to attempt to
follow a similar idea to analyze the sta')ility of the solutions of (2.2). Thus, we
introduce a function QN(t) defined by

Q"I(t) =t(< KNiiN(t),fN(t) >RN + < MNf)N(t),VN(t) >RN)
2
+ < W N;UN (t), jjN (t) >RN

where WN is an N x N matrix. Obviously, WN plays a role analoguous to that of
the integral term in Q(t) involving the vector field f(.). Then if we take EN(t) =

!!(uN(t), vN(t)) !1 2 HR' by eLtablishing (L1)-(L3) for some constants T1, T2, and M,
independent of N, we can obtain the uniform exponential stability of the approx-
imate solutions following an argument similar to that outlined previously for the
solutions of (1.1)-(1.3). The following condition is required if (LI) and (L3) hold
with constants T, and M independent of .%

Condition 2.2 (Boundedness of WN) There exist constants 31 and 032 independent
of N such that that for all fN,gN E RN,

< WNfN,g N >RN <0,3 < KNgN, gN >RN +02 < MNfN,fN >RN.
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Lemma 2.1 Under Condition 2.2, there exists a constant T, independent of N such

that for all t > T1,
QN(t) >_ t EN(t).

-4

Moreover, for any given T > 0, there exists a constant M independent of N such

that for all t < T,

IQN(t)l < MEN(t).

Proof: It is sufficient to take T,1 = 4 max{3 1 ,/02} and M > T/2 + max{Il, 3
2}.

As it is in the case of the analysis of the decay rate for solutions of (1.1)-(1.3),

condition (L2) is the most difficult to establish (see [C], fLJ). In fact, by using (2.2),

we can compute the derivative of QN as follows
(<K , N N N )

N(t) = + < MNf)i>RN )

-t <B SNV, >RN + < w fvN N 
, >RN

- < WN(MN) -(KNN + BNoN),t N >R. •

The above derivation involves use of the expressions

& N(t) = fN(t), N(t) = -(MN)-l(KN fN(t) + BNIN(t)).

obtained from (2.2). By adding and subtracting

(< KNiN,N >RN + < MNVN,V N >RN)/2,

we obtain

(2.3) N(t) =-2 (< KNfN(t),fLN(t) >RN + < MNioN(t),tfN(t) >N)

+ < KNiiN(t),ijN(t) >RN, - < KNaN(t),CN iN(t) >RN

+ < MNN(t), 3 N(t) >RN + < MNvWN(t),CN)N(t) >RN

-t < BNiN(t),N(t) >RN - < BNVN(t),cN N(t) >RN,

where the matrix CN is defined by (CN)T = WN(MN) - 1.

The following conditions can be of practical use in establishing (L2).

Condition 2.3 There exists constants a,,a2,a3,9, and b, with (p + 6) < , each

independent of N such that
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(Si) For any fN E RN,

< MNfN, fN >RN + < MNfN,CNfN >RN < (a,- L) < BNfN,fN >RN'

+i <MN fN,fN >RN;

(S2) For any fN, gN c RN,

< KN9N, 9N >RN - < KNgN CNgN >RN - < BNfN,CNgN >RN

<(6 +j) < KNgN,gN >R + < fN,N .

We note that a necessary (but not suffic" r 1) condition that (S2) hold (take

(UN = 0) is

(S3) For any gN C RN,

< KNgN,gN >RN - < KNgNCNgN >RN <_ 3 < KNgN,gN >RN.

If a matrix WN can be found such that Condition 2.3 holds, we can show
that (L2) holds immediately.

Lemma 2.2 Under Condition 2.3 there exists a constant T2 independent of N such
that jg(t) < 0 for all t > T2.

Proof: Let A be chosen such that 6+g < 1/2, then by taking T 2 = a, +a2/A+a3/1 ,

using (2.3), we have N(t) < 0 for all t > T2.

E

In order to obtain a uniform exponential decay rate for the approximate
solution semigroups SN(.), where (uN(t),vN(t)) = sN(t)(uN(O),vN(o)), we also
need the following Lax-stability condition for the approximation scheme.

Condition 2.4 There exist constants C > 1 and w > 0 independent of N such that

<s(t)11L(HN Ce

for all t > 0.

The above condition is automatically satisfied if the approximation is con-
vergent. Finally, we state the main result of this section.

9



Theorem 2.1 Suppose that a matrix W N can be found for each N such that Con-
ditions 2.2-2.4 hold. Then, there exists constants L > 1 and a > 0 such that

IISN(t)11L(H .>HN) KS Le"'

for all t > 0 and for all N.

Proof: By Lemma 2.1 and 2.2, we can find constants T and M independent of N
such that for all t > T, the following statements bold.

(a) QN(t) > tEN(t)/4.(b) ¢"(t) < o.
(c) QN(T) < MEN(T).

By Condition 2.4 and (c), we obtain

Q>(T) < MEN(T) < C2 Me T E' (0).

Combining the above inequality with (a) and (b), we obtain

EN (t) < C2MeTEN (0).

t

If we let A2 = 4C 2Me 2 LT, the above inequality can be rewritten as

ISN (t)(Ul (0), vN (o)),N 2 H - 1(uI(o) H(o) ,

for all (uN (0),V N(O)) E N" x HN and t > T. As a consequence, for r 4A', we
,iave

1 2 2

for all N. Using the semigroup property of SN(.) and Condition 2.4, we obtain the
inequality

IISN(t)IL(HN.HN) K_ L .e- Ot

by taking a = In2/4A' and L is a constart independent of N.

It is clear now that the difficult part of the analysis for a given approximation
is to estabish Conditions 2.1-2.4. In the sub'equence sections, we will specify the
required matrix WN for tvo different types of approximation methods and verify
tat Conditions 2.1-2.4 hold.
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3 Mixed finite element methods

In the most common implementations of finite element methods, the two compo-

nents of the mild solutions of (1.1)-(1.3) are approximated by functions uN(t,r)

and vN(t, x ) with the same smoothness in spatial variable x, or more precisely, the

approximation spaces H N and H N are often chosen to be identical. However, both

the analysis for the existence of the solutions of (1.1)-(1.3) and nature of the wave

propagation suggest that u and v have different smoothness in x. The methods

analyzed here use different approximation spaces H N and H N which give differ-

ent smoothness in x to the functions uN and vN. The term "mixed finite element

method" is used heie to indicate that two different types of approximation elements

are involved in these schemes.

We first consider the case of a one-dimensional wave equation. Let fQ

(0, 1), so that the equations (1.1)-(1.3) can be written for a typical set of boundary

corditions (i.e. 10 {0}, 1  {1)

(3.1) - u(t, X) - u7 u(t,X), t > 0,x E(0,1),

(3.2) u(t,0) 0, t >0,

a9 a(3.3) xU(t, 1) = a u(t, 1), t >0.

The following approximation method has been proposed by Ito and Kappel

in 1JKI. The basis elements 6' and t for spaces H N and H N , respectively are

defined by

ON(~ X E Xk-l, -k+Il](I o,1j,

1-x) =,0, otherwise,

and

; N () 1, E Ik- , Xk~ijfl,j,
k 0, otherwise ,

where k = 1,-.. ,N and xk k/N. It is easy to see that {}QI forms a basis

for the set of continuous piecewise linear polynomials (i.e. linear splines) on [0, 11
corresponding to the uniform mesh {k/N}NO with function value equal to zero
at r = 0. The tbN's are piecewise constant functions with the same support as

the corresponding ON 's. Therefore, HN C H'(1) H{ II'(0,1) (0) = 0} and
span{} N NIN 1 C L 2 (P). The matrices MNKN, and BN of the previous

section are defined by

11
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KN = d O X dN
RN Joz' (j~0' (x) dx,

Before choosing the matrix WN, we first establish the following useful equal-

ities.

Lemma 3.1 For any fN E RN, the following equalities hold.

(i) Let gN = MNfN, then the component gA is given by

(2fjN + f2N)/N, k =1

gk kff-x + 2fk + fAN:+ )/N, k =2,...,N - 1,
(fNN + f 1)IN, k = N.

(ii) Let gN = KN fN, then the component g' is given by

N(2fN_ fN), k 1
gk" N(-f'v_ + 2 f k - fkN ) , k=2,...,N-1

N(f- fL,), k N.

(iii) For any fN C RN, we have

< 1~ Nf
<MNfN,fN >RN = N (fN)2 + N (fN + fN 1)2.

kN'2

(iv) For any fN E RN, we have

N

<KNfN,fN >RN= N(f1) 2 + N (f k f ,)2.
k=2

Proof: Equalities (i) and (ii) follow directly from the definitions of the matrices MN

and KN, respectively. The following equalities are used frequently in this section,
and in particular, are useful in establishing (iii) and (iv). Let ak, bk be given numbers
fork= 1,...,N. Then

N-1 N

(3.4) a~b, +~ aI~bN + YL(ak +i' ak±,)bk E Eak(bk + bk, ),
k=2 k=2

n-1 N

(3.5) - a, + aNbN + Z:(ak - ak+i)bk I:~ ak(bk - b-)
k=2 k=2

12



From (i), we have

< M11fN, fN >RN N(J±ffN1 'N ,NN
f, >RN =N (2f' + fN)S + ( + J_)JSk*

N-1+Nf E (Vs + 4 -, + (k+, + fk ))S,
k=2

By taking ak = fk + fk'_,,bk = fN, and applying (3.4), we obtain

1V , f N(fN) 2  1N

< MNfN fN >RN= N(f) +N (ffv+fNjl)2.
>RN= N I Nk=2 k

From (ii), we have

<KNfN, fN >RN = N(2f - ff)fN + N(fN -f N- 1)fN .
N-1

+N Z ((
s

N - fS-) - (fN1 -- fkN))f N

k=2

By taking ak fj _ fkj1, and bk = fN, and applying (3.5), we obtain

N

< KNfN,fN >R. = N(f) 2 + NZE (ff_- f- 1)'

k=2

Now we can define a matrix CN (and hence the matrix WN = (CN)TMN)
as follows. For any vector fN G RN, the vector gN = CNfN is given by

f2N, k =,
gNk k f+ k-1), k =2,..., N- 1,

2N(f,- fN-1), k = N.

The definition of CN can be seen as a discrete approximation of the term in the
multiplier Q(t) involving the vector field f. In fact, in our case, we ca;. take
£(z) = 2x. In fact, for any function fN( ) I fkNVO?(x) E HN, we approxi-
mate 2t(x)dfN(x)/dx by

eN W =) oNzT CN!N.ON (Z) T= ¢N( bN. c 1,

where i/ (x)T is a row vector valued function given by NN(x)T = (L4(x),...,
One can verify from the definition of C V, ;bgN and ON, that on each sub-interval
(zk 1,xkj, for k = 3,...,N - 1, we have

eN(Z) = 2 (Xk_ fN(xk) - fN(xk-2) + XkfN(Xk
+ ) - fN(Xk-)

Zk - Xk-2 Xk+1 - Xk }

13



which can be regarded as a discrete approximation to the first integral in the defi-
nition of Q(t).

Thus, for any vN E HN with

N

k=I

and eN as defined above, the following equality holds

f' eN(x)v(x)dx =< W >RN-

The Lax-stability for this approximation scheme is given by the convergence
analysis in IK], and the norm compatibility condition holds with c1 - c2  1. We
need to establish Conditions 2.2 and 2.3.

Lemma 3.2 For any vector fN, gN E RN, the following inequality holds

I < MN fN , CgN >RN I <_ 2 < MNfN, fN >R, +2 < KVgN , gNI >RN.

Proof: By definition of the matrices MN and CN, we have

MN f N , CNN gNN N rN"g
NRl - fl f 2

1 g 2 (f; + fkT-M)gN - N-1)1 N-N
+- - k ((d + f)+ (fN _- fk_)) ((gN 1 - + (g - Ii)).

Nk=2 k k kk+ k -

Using the inequality abl < (a'/N + Nb')/2, we obtain

(3.6) [(aI + a2 )(b, + b2)1 I (a' a 2) + N(b 2 b2).

By (3.6), we obtain

I K MNfN,CNgN >RN I 1 ((fN)2 + (f + f) 2 + (f +fNN_)2)

1 N-1

+ N-i (us + + (fl + fk_)2)
k=2

+N ((g ;)2 + (gN - gN)2 + (g - gN_ 1 )2)

N-1

+N E ((g,- gN) + (gN - gN 1 )2)

k=2

14



2 N N2 (fN) 2 + Ey?( fk§) 2~
k=2 +f

N+N(gN)2 + 1>1N _ gN 1)2)
+2N (() I k=2 k -

Lemma 3.3 For any fN E RN, the following equalities hold.

(3.7) < MNfN, CNI N >RN = _ <MNfN,fN >RN

+4(fN + fj,)fN -(fN + fN(_1)2,

(3.8) < KNfN,CNfN >RN = < K NfN,fN >RN +N 2 (fN - fN 1 ) 2 .

Proof: First consider (3.7) and observe, as in the previous proof, that we have

< MNfN,CNfN >RN= N(2 1 + f2)f2 + 2(fN' + fv 1 )(fNN - fNN- 1)

N-I-1 k ((fkNi + fkN) + (f '+ fk'1)) ((fkN, +fkN~) - (fk + fkJ)).

The sum _N=1 on the right hand side can be written as
I N - I V 2k 

2

ZN E [(k + 1)(fkN + fN) 2 - k(fN + fsN_) 2 
- (fSN + fN

k--2

2j) N + Nk 1) 2

= (S NL N-) 2 -- V2f f/) - N (fk l'

k=3

Therefore, we obtain

SNfNcNfN 1N2(f )f(fN ±fk,_,
<Mf:cf>RN= NE,_. _(fkN+fNlj 2+4 (fN+ fN N(NN+fNI.

k=2

Thus using Lemma 3.1 (iii), we find

<MNfN, CNfN >RN= - < MNfNfN >RN +4(fjN + fN_ )fN_(fN + fN_) 2 .

Next considering (3.8), we have

< KNfN, cNfN >RN= N(2f1 v - fN)fN + 2N 2 (fN - ff') 2

N-I+ N E k ((fsk - fsk_, ) - (f k+,I- fsk)) ((f k - fk'_,) + (f+I,- fIN)
k=2

15



In a manner similar to that above, the sum E-1 can be rewritten as

N E [(k - f k 1)' - k -(, f ,") + (fkN - f_ 21]

k=2

N-I

- N(N - 1)(fN - fv_1 )2 + N(f2 - fj)2 + N (fN - fj_,).
k=2

Using the above equality, we have

< KNJf,CNf N >RN= N =f2 _(f:- f ) + N 2 (f -
k=2

Using Lemma 3.1, we obtain (3.8).

0

By the definition of the matrix RN we have for any f N, gN ,

<N f,fN >RN= a(fN) 2, < BNfN, CNgN>R = 2aNfjN(g - g

Combining the results in Lemma 3.3, we can obtain Condition 2.3.

Lemma 3.4 Condition 2.3 holds.

Proof: Consider

< MNfN,fN >RN + < MNfN,cNfN >R = (f + f ±- )'+4fN(fNN + fNN-,)

< 4  =(fN)2-- < BN N, f N .a

Also, we have

< KNgN,gN >RN - < KNgN, CNgN >Rn - < BNfN,CNgN >RN
- -N 2 (gN - g - 2aNf(gN - gN_ I)

<a W()2 = a < RBNf N,fN >,RN

We can thus invoke Theorem 2.1 to conclude that the method described
above preserves uniformly exponential stability of the solutions of equations (3.1) -
(3.3).
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In the case of a two-dimensional wave equation on a rectangular domain
l= {(z,y) : 0 < x < 1,0 < y < 1}, we may consider the following special case of

(1.1)-(1.3):

a( 92 a2
(3.9) U-,,(t, X, Y) - -,(tx,Y) + - u,(t, x,y ) , (xEy) E f,t > 0,

(3.10) u(t,x,y) 0, (x,y)E ro, t >0,

(3.11) a,,u(t,x,y) -a tu(t,x,y), (x,y) E r,t > o,

where Io = {(x,y) E n,x =0, or y = 0} and r' n /P 0 . The mixed finite element
method is defined as follows. For each given integer N, let (xi, yj) be the grid points
defined by xi = i/N, y, = j/N, for ij = 0,1,...,N. For each pair of indices (i,J)
with 1 < ,j < N, a neighborhood of the grid point (xi,yj) is defined as

D X )E I i1: 1 ,1 ,5 1 .
D = {(,y) 2: x-x, -  N Ix- y - x, + Yj I N

Two families of functions are defined by

(XY)1-Nmax{Ix-xi1, ly-y;,I x - y - x , - y j , (x, y) GD,,
y = 0, otherwise,

',ij, (X, y) E DN,

i, { 0, otherwise,

where the constants "yij are chosen such that we have the equality

fn O(x, y) dxdy =: fo O(x,y) dxdy.

We then choose H g = span{0N}5.=,, H2 = span{}!§..1 . We prefer,
for simplicity of presentation, to denote an element of an N2 x N' matrix AN by
A() .(" Using this notation, the matrices MN, KN, and BN are defined by

(if (kl) fo)i b (i y)dxdy,
N f VN(zY) . VN) (y)dxdy,K(,,),(k,) f fo

(ij),k .j (xY)(x' y)dF1.

Although our numerical results indicate that this method preserves uniformly expo-
nential stability of the solutions of (3.9)-(3.11), we are, to date, unable to confirm it
analytically. We have attempted to use arguments analogous to the one-dimensional
case, but the number of terms to compute and the associated tedium quickly become
overwhelming.
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4 Polynomial based Galerkin approximation

In this section, we present a stability analysis for a general class of Galerkin type
approximations of the wave equation in R'. Several technical assumptions on the
domain 01 and the approximation spaces H N , HN are needed for exponential stabil-
ity of the approximate solutions. In particular, hypercubic domains in R" with all
reflecting sides sharing at least one common corner satisfy these conditions. The re-
quirements on the approximation spaces can be satisfied if we take H4 = HN = HN,
and HN is a carefully defined subspace spanned by the tensor products of polyno-
mial functions.

Since the arguments developed here can also be useful for the analysis of
other approximation methods, the assumptions are made in a general form. We
will indicate in each case how polynomial based Galerkin methods satisfy these
assumptions.

Now consider the wave equation given by (1.1)-(1.3) where we make the
following assumptions on the domain f1.

Assumption 4.1 There exists a constant r > 0 such that for any E > 0, there
exists a vector field t(-) G C 4 (fl; Rn), with the properties:

(V1) The matrix L(x) defined by

L(z) 1(a., ) + j() 1 (&,(x) +,ix))
2 2 j 0 x, 2

satisfies L(x) --- I > 0 on the domain 07;

(V2) For z E al, the outward normal unit vector rt(x) satisfies

£(x). r7(x) < 0, forxefo, (x). t7(x) >r, for x e F11 ;

(V3) The following inequalities hold

n n

i,1=l isj=1

where

1x92- 4 (
'9) 1 a8

is



We note that (V1)-(V3) are exactly the same conditions as these required
in [C] where the author treats the exponential decay of the solution of the wave
equation. For a given domain 10, if there exists a point 0 E R" such that (x -
x0 ) -r(x) < 0 on F0 and (x - x0 ) . ?7(x) > r, on li, by taking £(x) = x - xo, the
conditions (V1)-(V3) are clearly satisfied. In particular, consider the hypercube fl
given by fl = {x E R",0 < xo < 1}; if Fo is the union of a collection of sides that
share at least one common point x0, then one can verify that i(x) = x - x0 satisfies
(V1)-(V3). In fact, in the case of a hypercube, if F0 is the union of a collection of
sides without any common point, it can be shown that the solutions of the partial
differential equation (1.1)-(1.3) are not exponentially stable.

Now consider subspaces H N  = HN C H(Q) n H(fl) given by
=N - span{ N}NN 1 , where the O are a general family of approximation elements.

The matrices MN, K ', BN of Section 2 are defined by

, f i €(x) dx,

Ij i JN(z) dz

i3 fri aq51. ) .(x) dx.

Before we introduce the multiplier matrix CN, we present a few useful special
properties of the matrices M N , KN, BN.

Lemma 4.1 Consider a sequence {kN(.)}N:1 of functions in H- and let VN be the
matrix defined by

Then, the matriz D' (VN)T(MN) -BN can also be given by

DN oON (X)ON(xJ)dx2.

Proof: Since the 0N(.)'s are elements of H N, there exist constants ON such that

N

Let (N be the matrix with entries 0 ; then we have VN = MNo N . In fact,

N N

V f j (,)(x)d)6i = E
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Therefore, we obtain D" = (EV)TBN4 and hence

N N
o B / Z aO(x)O7(x)0dx = aO,(x)qS(x)dx.
1=1 I J=1

[=

Lemma 4.2 Let VN be the same matrix as defined above. Then, the matrix FN

(vN)T(MN)-IKN is also given by

FN ON(X)a-N (x)d - J (x)AO(x)dx.

Proof: We only need to consider FN = (ON)TKN where the matrix ON is the same
as before. We have

N

F E- 6i Vk . VON (x)dx
1=1

NN NE o,,iN(x) N; (x)dx - 01 O,,¢,(x,LON(x)dx.

Therefore, we obtain

F~~>=f' ONxY- (x) dx - f O, (x). - L(z d

Now, by imitating the multiplier used in Section 2 for Q(t), we define the

matrix WN = (cN)TMN as
n

= ON2(eN• V€,)€(X) + (1 4k _ 1)gk(O)N(X )}d

k=1

where £N t') is a vector field which satisfies Assumption 4.1. In order to be able to

use the previous matrix equalities, we need further technical assumptions on tN .

Assumption 4.2 There exist constants r > 0 and M > 0 independent of N such

that there exists a vector field £N (.) e C4 (fl; R n ) which satisfies Assumption 4.1 and

furthermore

n

*,,ik C- HN, with IIeN(x)II _ M, I E .(X)l < M,
i= 1 i=1

for allxE 0 andk = 1,...,N.
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The above assumption is satisfied if there exists x0 E R" such that £N(x)

x - xo satisfies Assumption 4.1 and if HN is defined by

HN f(xi,.) = 17 Pk(xk) E H (f ), where
n-h ck= l

OPk() are polynomials of degree less than or equal to ink.
In the case of a hypercube, one can easily construct H N by taking pj- E Pk (0, '1,

where Pnk (0, 1) are polynomials of degree less than equal to mk which satisfy the
appropriate Dirichlet boundary condition.

The following lemma will establish Condition 2.2.

Lemma 4.3 Under Assumption 4.1, there exists constants cl, c2 depending only on
the domain fQ such that

1< MNfN,CNgN >RN <WNfNgN >RN

< cl < KNgN, gN >RN +c 2 < MN fNf >R1,

for all fN, gN E RN.

Proof: Let us associate each vector fN E RN with an element fN(.) E HN given by

fY(x) = g fk g(x). It is easy to verify that for any vectors fNgN e RN

< KgN,gN >R14 = J VgN(X)lJndx = jjgN(')jj'

<MNfN, f N >RN = I-fN(')I()

Similarly, we have

< MNfNCNgvN >RN=< WNfN,gN >RN

j(N(X) . VgN()) + 1 fN(X)gN(X)

From standard results, there exists a constant c depending only on 0 such that for
all u E H(1), IIU2(n) < cjlull'. By Assumption 4.2, we obtain
1< MNfN N >RN 3 11f N() 11 2(fl)

+ (C N,,(') - 1 L)+ nilN(.)ILOO(r) jjgN(')j

= c2 < MN fN, fN >RN +C 1 < KNg ,g >RN,

where c2 = 3/2,cl = njIeN(-) L-(n) + c/2i E7=, 1.(.) - IILO(0). E

The following two lemmas are useful in establishing Condition 2.3.
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Lemma 4.4 Let Assumption 4.2 hold. For any fN E RN, let fN(.) be the function
in HN given by fN (x) N1 ftN (x). Then

< MNfN,CNfN >RN - < wNfN,fN >RN

- < MNJ NfN >RN + j fN(X) 2 eN(X) . r( x )dx.

Proof: Let GN = WN + MN; then

/N ONeN V)(X) + (Z t~k ON (X) ON (X)d.
"12( k=1

Then, we have

< GNfN,fN >RN

- I z{2(NV N f )g(x)f + (. k(z) (X)f NON(x)fj}dx
ij=l k=1

] N .2(t' V f N(x))fN(x) + t (X)fN(X), dx
k=1

fdiv(fN(z)tN (x))dx

= ffN(X)2N(X) .7(x)dx,

because fN(x) = 0 on FLo. 0

Let us define the matrix LN(x) by (recall condition (VI) of Assumption 4.1)

N (X) = I \ o (Z +  , •
L 2 \8xj ax,

Lemma 4.5 Under Assumption 4.2, for any gN E RN, let gN (.) be the function in
HN given by gN(Z) N I gkO(X). Then we have

< KNgN,CNgN >RN - < KNgN gN >RN

= 2 (VgN)T(LN(X) -I) VgN(x)dx - J( (,x)dx

+ j!(: ZN .7;)gN(x) 2dx + jVgNlj2 N .

S i,j~l
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Proof: We have < KNgN CNgN >RN=< WN (MN)-IKNgN, 
9 N >RN. By taking

O(x) = UN VOV(X) + (fN,() - I €(x),

we have

n f j x)(x)dx-
where VN is as defined in Lemmas 4.1 and 4.2. By Lemma 4.2, we have

< KNgN, cNgN >RN=< FNg N,gN >RN,

where the matrix FN is given by

FN f 9N()(zd -/ ON'(X). O

As a consequence, we obtain

(4.1) < K N N, CNN >RN

_ _( 2 N. VgN(x) + (e - 1) g(x)),sgN(z)
k=1

Consider first the term

IN= vg(X) + IN _ 1)gl(X) Ng )
1N j (2 t N - V gN (1  +' A g)N~ ) A (x) dx.

k=l

For all functions 0 C H2(e)

2A OeN. Ve) + ( k) €

div 2VO(eN . V) -ivl1lt + o(E I )v

i=1
(V ) N n€

--2(V¢) T LNV - ,,23
ij=1
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Therefore, we obtain

iN £ 2 VN(x). LNVgN(x) + i jN N9W

= f (,Ne. VgN) + ( k)gN) - gNj2 N * d

- Jr VgV U2& 77dx,

where we have used Assumption 4.2 to observe that 2 (tN. VgN) + =j f k,kg g is in

HN and hence vanishes on Fo. Since gN vanishes on £o, we have that also 2 (jN.VgN)

must vanish on I'O. Moreover, since g N(X) = 0 on Po, vgN(x) := ±VgN7r on Fo
and hence jVgNI 2 gN .r7 - VgN[.N . Vg N = 0 on F0. As a consequence, we obtain

n N N
LN Vg,'VgN + E jNj N AAg.Nd-In NNN R'ijl 9j9 gd

n3

1 [(2 (£N " N) I ( kgVgN 2 . dx.
, k=1

Integrating the terms

ax3 g and gg WgN(x)

by parts once, we obtain (

N - f{2 < LNgN, VgN >R',--jVgN-2 - ( ' (g N ) 2}dx

i1<2 , j=1 2

Finally + r1 (2£._ VgN + ( - )gN) dx

Fnlycombining the above result with (4.1), we obtain

SKNgN, CNgN >RN 7

( R- dx

In 2 <LNVgN,VgN >R.--VgN[ - 7 2iij9 ) d

+ f vkgNlk. Z +x.

k=1

f12 7 + j
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This least equality is equivalent to

< KNgN,CNgN >RN - < KNgN,gN >RN

Si 2 (< LNVgN, VgN >R- -IvgN2)d

-- J2 z fJ)(gN)2 d+ j VgN 2 1N•

(Z ',jj)(g)dX. d
j= l

+S 12 F, yj 77) (gN)'dx.

By using Lemma 4.1 and the same notation as for Lemma 4.4, 4.5, we find

<RNfN CNgN >,V j £ 2 VgN . N _ I)gN f )g dx,

< BNfN, fN >RN = a(fN)2 dz.
€1,1

Lemma 4.6 Under Assumption 4.2, Condition 2.3 holds.

Proof: (i) By the boundedness of £ and Lemma 4.4, (Si) holds. (ii) By taking e
sufficiently small in Assumption 4.1 and 4.2, we have

n
j {VgI(X)j24 N(X) .1(X) + (2

fr2 , f, £; 7j)g'( (x), >O0l i,j=l

and
1Ji.yjj)gN(z)!Z <f VgN(X)1d
2fr

for 6 arbitarily small. Therefore (S3) following Condition 2.3 holds. (iii) By the
Schwartz inequality, < BfN, CNgN >RN can be bounded by

<BNNCNgN >R '1 f JfN(X)1 2d ± l VgN(X) 2 dBv < N >R-I_ _ dx (C2 f jdr

where the constants cl,c 2, and v are independent of N and v' can be arbitrarily
chosen. Therefore, (S2) of Condition 2.3 holds.

As a consequence of Lemma 4.3 and 4.6, on the domain f) and the sub-
space HN, we conclude that under Assumption 4.2 these approximation methods
uniformly preserve the exponential stability of the weakly damped wave equation.
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5 Numerical studies of approximation methods

As has been demonstrated in the previous three sections, establishing a uniform
decay rate estimate for a given approximation method can be complex and tedious.
In fact the general approach outlined in Section 2 offers only a broad direction

toward the selection of the appropriate multiplier QN. On the other hand, for any
given approximation method, by computing th2 eigenvalues of the matrices A" in

(1.5), one can observe the trends in the location of the eigenvalues as N increasess.
In several cases presented below, the numerical results clearly indicate that some of
the eigenvalues of AN are approaching the imaginary axis as N increases, and it is
therefore unlikely that a uniform decay rate can be preserved.

The example used for demonstration in this section is the two-dimensional
wave equation (3.9)-(3.11) where the parameter a is taken to be 1. The construction
of the matrix AN is presented for each approximation method. The eigenvalues are
then computed using the subroutine F02AFF of the FORTRAN software library
NAG. The results were compared with the results using the IMSL library, and no
visible difference can be observed. All computations were carried out on a IBM
3081 computer.

5.1 Polynomial based Galerkin approximation methods

Let {Qk()}J'k be the Legendre polynomials of degree less than or equal to N on
the interval i-1'. We define a sequence of polynomials Pk by

Pk(S) =Qk(s) +I (-1)kQ0(S)

for k = ... ,\.

It is ea.v to see that P' = span{Pk} L is the set of polynomials of degree
less than or eial to r vanishing at s = -1. Let us define matrices /NK . as
follows

M~ji f P3 (s) Pj(s) ds,
K !. d P, s() d s) ds

The matrices M;v , KN can be easily computed using the recursive properties and
the orthogonalitv of the Legendre polynomials. Now let ¢(z~y)
P,()P(y). We is'urne a scaling of the domain A onto -1,11 x i.1 is made.
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Figure 5.1: Locations of the eigenvalues of the matrix AN for the polynomial based
Galerkin method.

N=3 N=4
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N=6 N=9
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The matrices MN , KN, and BN defined in the previous section can be computed as
follows:

M'i),k)= IM:],,kIM:},,
[KN](jj.(kj) =[Kalik[Mfajl + [M],k[K]i,

[BNj(,j)(kj) = a[ j],kP,(1)P(1) + aP,(1)Pk(1)[M ]jjj.

The matrix AN is given by

-(MN)-lKN _(MN)-'BN •

The dimension of AN is N 2 . For N = 3,4,6, ,9, the locations of eigenvalues are
displayed in Figure 5.1. We note that as would be predicted from the analysis of
Section 4, a uniform margin between the eigenvalues of AN and the imaginary axis
is maintained for all N. In the Table 5.1, we list the margin of stability for each N.

Table 5.1: Margin between the eigenvalues of the matrix AN and the imaginary
axis.

N max{ReA,A E a(AN)}
4 -0.6230
5 -0.6215
6 -0.6232
7 -0.6097
8 -0.5815
9 -0.5628

5.2 Polynomial spline based Galerkin approximation methods

For N a given integer, the interval [0,11 is divided into equal sized subintervals
[Xk-1,xk] with xk = k/N for k = 1,...,N. Let BN,' be the set of polynomial
splines of order m corresponding to the grid {xk} that vanish at x = 0. ConsiderNrn)N+rm-1 for MNN KN

basis f k l for B on n = [0,11 x ,0,11. The matrices M7,K are
defined as

[ B,' (x)Bm' (x)dx, i,j=1 ,...,N + ,
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Figure 5.2: Locations of the eigenvalues of the matrix AN for the linear spline based
Galerkin method.
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Figure 5.3: Locations of the eigenvalues of the matrix A- for the cubic spline based

Galerkin method.
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f I  d N'M d m
[KNj = - B  (x)-B m(x)dx, i,3, =1,...,N+m-1.

The matrices MNK N can be easily evaluated. We define Oy !(x,y) = €;i(Xy)
B,'m(x)Bj (y). The the matrices MN, KN and BN are defined as

IMN(i,).(k) = J0 , (X, Y)ON (x, y)dxdy,

1KNhijk,,) = J, V4~(x, y) . V V(x, y)dxdy

B1 N](,j),(kl)= UN(,Y O X 0l,

Again, the matrices AIN, KN, and BN can be computed using M and K ,. Since
only the first derivative of the spline function is required, either linear spline or
cubic spline functions can be used. In Figures 5.2 and 5.3, the locations of the
eigenvalues of the matrix AN using linear and cubic spline functions, respectively,
are depicted. We note the similarity between the locations of the eigenvalues with
small imaginary part and the locations of the eigenvalues of the matrix AN using
polynomials depicted in Figure 5.1. However, the eigenvalues with large imaginary
part tend toward the imaginary axis. Another interesting observation is that un-
like the eigenvalues of AN using polynomials and cubic splines, the eigenvalues of
AN using linear splines do not have exceedingly large negative real parts; further
discussion concerning this observation will be given in the final section.

5.3 Finite element method

The classical finite element method requires that we subdivide the domain f1 into
triangles where functions linear on each triangle are used for the approximation.
More precisely, for any 1 < i < N and 1 < j < N, a function € is defined as

{ 1 -Nmax{Ix- xl, ly-y, Ix-y-xi+yjI}, (x,y) eD N ,

0, otherwise,

where the support DN1 is defined by

Di = {(z,y) E nl: Ix - x, I - Y _ , Ix - y - z, + yf < j}

with x, = i/N,yj = j/N. We choose the functions Vx(x,y) = ON(X,y) and the
matrices MN, KN, and BN are defined as in the other Galerkin methods.
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Figure 5.4: Loaction of the eigenvalues of the matrix Av for the finite element
method.
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The computation of the matrices MN, KN, and BN uses finite element tech-
niques based on elementary matrices.

The location of the eigenvalues are depicted in Figure 5.4. We note that
some eigenvalues with large imaginary part tend toward the imaginary axis which
suggest that no uniform decay rate of solutions is preserved. We also observe that
only a few eigenvalues have large negative real part.

5.4 Mixed finite element method.

The mixed finite element method presented in Section 3 was also implemented. In
Figure 5.5, the location of eigenvalues are depicted.

Figure 5.5: Location of the eigenvalues of the matrix AN for the mixed finite element
method.
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the imaginary axis is maintained, the locations of the eigenvalues are dramatically
different from the previous approximation schemes at lower values of N. This might

suggest a slower convergence rate for the approximation scheme.

In Table 5.2, the size of the margin between the eigenvalues of AN and the

imaginary axis is reported.

Table 5.2: Margin between the eigenvalues of the matrix A N and the imaginary axis
for the mixed finite-element method.

N max{ReA,A Ec(AN)}
4 -0.4689
5 -0.4596
6 -0.4552
7 -0.4527
8 -0.4512
9 -0.4969
10 -0.4496
15 -0.4632

5.5 Finite difference approximation method

Unlike the other approximation methods presented so far, in the finite difference
method one attempts to approximate the solution of the wave equation at the grid
points directly. In fact, for any given integer N, let u?' (t), v(t) be the approxi-
mation of the solution values u(t,z,,yj),v(t,xyj) = ut(t,z,,yj) of (3.9)-(3.11). The
wave equation is approximated by

d U 
N. 

(t)= V

(5.2)d N 2  UU(t) + U j(t) + uN1 .(t) + uN.
d t + U N

fori=2,...,N- 1 andj=2,...,N- 1.

At the boundary x = 0 or y = 0, by taking u N = uN 0, the equation (5.2)
still holds. However, at the boundary x = 1 or y = 1, the second derivatives are
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Figure 5.6: Locations of the eigenvalues of the matrix A' for the finite-difference
method.

N=4 N=7

N=8 N=10
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approximated by one sided finite differences. In particular, we take

d VN N 2 (uN~t + UN ()

7tViN (2uiN(t) + U%.l,N(t) + u 1+,N()

+N (aVN(t) - N(,UN(t)- UN _1-(t)))

d N = N (-2u.,(t) + uj_ 1 (t) + uN+,(t))

+N (avN,,(t) - N(u', 5 (t) - u_,j(t)))

for i = 1,...,N - 1,j = 1,...,N - 1. At the corner (1,1), we take
d N NN ( )

dtVN,N = (avN ,N(t - N(uN(t) - u N N
+N (aVN,N(t) N(u, (t) - UN (t)))

-- N _ I, N  •)

The locations of the eigenvalues of the matrix AN are depicted in Figure 5.6.

It was a surprise to us that ti'le eigenvalues of AN for this finite difference
approximation are so different from those of the other schemes. Many variations of
the finite difference methods exist; we believe that an adjustment of the method used
here may well produce different locations for eigenvalues. However, our experience
with the above standard finite difference approximation method suggests that no
uniform margin between the eigenvalues of AN and imaginary axis is maintained
for all N.
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6 Concluding remarks

Even in view of the analysis for the methods given in Sections 3 and 4, one might
ask why these two methods succeed while several other popular approximation
schemes fail. One possible explanation is the following. As approximation methods
of a second order system, many approximation methods approximate the second
component v which has the same smoothness as Vu theoretically by functions with
equal order of smoothness as the approximation for u. In another worcs, if u4N G H N

and v. E H. are taken to be the initial values of the equations (1.1)-(1.3), the
solution v is much less smooth than elements in HfN. This is not the case in the
mixed finite element method and the polynomial based Galerkin methods.

We should also comment on the implications of the present results with re-
spect to the boundary control problem. If the boundary condition (1.3) is considered
as a boundary feedback control, with an appropriate approximation of the input
operator, the results reported here can be used to construct finite dimensional ap-
proximate control syztems that are uniformly exponentially stabilizable. However,
this does not guarantee that the infinite dimensional system under the approxi-
mate control is exponentially stable. The inherent sensitivity of the conservative
wave equation with respect to perturbations of the boundary conditions remains
one major drawback of this type of model.

Finally, we observe that in both polynomial based Galerkin methods and
the mixed finite element method, a large number of extraneous eigenvalues with
large negative real parts are introduced. Therefore, the resulting finite dimensional
ordinary differential equation generated by these methods can be very stiff. This can
cause problems in integration algorithms. Since our main concern is to solve linear
quadratic control problems using these approximation schemes, this observation
should not substantially diminish the attractiveness of these two methods.
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